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ABSTRACT

The information metric associated with a univariate linear elliptic
family is shown to be, essentially, the Poincare’hyperbolic metric on a
half-space whose geodesic Rao distance is an increasing hyperbolic function
of a medified Mahalanobis distance. This result enables us to construct

new statistical tests and to recover earlier results as special cases.
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1. INTRODUCTION

~

The concepts of metrics and distances are fundamental in problems
of statistical inference and in practical applications to study affini-
ties among a given set of populations. A statis*ical model is specified
by a family of probability distributions, described by a set of continu-
ous parameters known as the parameter space. This model possesses some
geometrical properties which are induced by the local information struc-
tures of the distributions. In particular, the Fisher information matrix
of the given family of distributions gives rise to a Riemannian metric
over the parameter space, whose geodesic distance, known as the Rao dis-
tance, plays a major role in multivariate statistical techniques. For
the family of multivariate normal distributions with fixed shape but
varying locations. this distance reduces to the well-known Mahalanobis

« 30 —_
distance. -Ne/refer'to Burbea [1“é].u and Burbea and Rao.{3,4], and-the

references therein, for more details on these concepts and their deri-
vations.

An interesting statistical model {s provided by the family of
elliptic distributions whose density functions have elliptical contours
and which include the multivariate normal digtributions as a subfamily.
In this paper w;-ﬁéééy'the information mgﬁric assoctated with an ellip-
tic family whose shape varies linearly. _It will be shown that this met-
ric is essentially the Poincare'hyperbo1;i metric on a half-space, and
that the resulting Rao distance is an increasing hyperbolic function ot
the generalized Mahalanobis distance. This will enable us to construct

new statistical tests and to recover the recent results of Mitchell and

Krzanowski [6] as a special case of our setting.
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2. INFORMATIVE GEOMETRY OF ELLIPTIC DISTRIBUTIONS

We begin with a brief description of the general informative geom-
etry that is induced by a parafetric family Pe = {p(<|8): & e o} of
distributions for a‘fandom,variable X, possibly vector-valued, with a
sample space ¥, Here o is the parameter space, a manifold embedded in
R™, with points 3 e & coordinated by ¢ = [e],....em]*. and satisfying
the ordinary conditions of regular estimation. The elements p(-|e) of
Pe are probability distribution functions

p(x|e) = dP(x]|e)/du(x), (x e ¥, 8 € 0)
where u is a fixed positive o-finite additive measure, defined on a
c-algebra of the subsets of £. In particular,
Lp(-le)du =1,  (seo).
It is also assumed that for a fixed 8 ¢ 6, the m functions

lj(.le) = aloqp('!e)/aej' (j = ]’---'m)

are linearly independent and are in Lz(p(-le)du). This, by the Cauchy-

Schwarz inequality, implies that the elements

95 (8) = Egley(-lo)e, (+]0)), (Jok = 1,...,m)

of the information matriz G(8) are all finite, and that G(o) is (strictly)
positive-definite. It also implies that (LJ(-IB)}, j=1,0..,m, forms a

basis for the tangent space Te at ¢ e 0, and, moreover that

dsz(e) = de'G(a)de
is a Riemannian metric on 0; called the information metric of t.e family
Fb. This metric is invarfant under the admissible transformations of
the parameters as well as of the random variables, and the differential
geometry associated with it is called informative geometry. The latter

fncludes the evaluations of curvatures , geodesic curves and geodesic
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distances. The geode;ic distance S(e(l), 9(2)) between the points
6(1) and 8(2) of © 1s known as the Rao distance between p(-|e(])) and
p(.|e(2)) of Pe. For a more detailed account, we refer to Burbea [1]
(see also Burbea [2], Burbea and Rao [3,4], Oller [8], and Oller and
Cuadras [9]). We also note, in passing, that in matrix-notation, G(8)

may also be expressed as
6(e) = £, {2 log p(+|8) - Tog p(-|e)
ED 2t *
or as
6(0) = E (2(+]e)e(-]e)")

)]t

where £(-|8) = [z](-le). ....zm(~
An n-dimensional random variable X s said to havé an elliptic

distribution with parameters p = [u]. ...,un]+ and I, an nxn (strictly)

positive-definite matrix, if its density {s of the form

plxlu, 2) = BB o pi(x- )t T (x-uh) (2.1)

LA B

where F is a nonnegative function on R = (0,=) satisfying

Jor"/z"r(r)dr - 1. (2.2)

<

In this case the sample space ¥ is R" wgkh du = dv, the usual volume
Lebesgue measure of R". The parameter space 8 is now the n(n+3)/2-
dimensional manifold R"xP(n, R), where P(n,R) is the set of all nxn
positive-definite matrices over R.

The vector py and the matrix r for the point (u,I) in 6 may be ex-
pressed in terms of E(X) and Cov(X), provided the latter exist. In fact,

fteX

the characteristic function ¢ (t) = E(e’ ") of the above p(-|u, I) may
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be expressed as
op(t) = }“'”AF(tfzt) (2.3)
where '
Apls) = P(n/Z)jorﬁ/Z']F(r)Knlz_](rs)dr. (s e R),
with

K (s) = 2°0 (s1/2)/s%/2 ;o)

=0 4"mIT (mv+1)

and where Jv is the ordinary Besse! function of order v. Farmally,

therefore,
E(x) = 1 3¢ o (t)]|
t=0
and
2
+ )
E(XX') = = ———— a.(t) .
atatt F |t=0

This gives E(X) = u and E(XT) = w4 .z, where
cp = -2Ap(0) = %—jor"/ZF(r)dr (2.4)

and hence Cov(X) = cel. In particular, E(X) exists if and only if

;@ n/2-1 n/2
'Or

F(r)dr < =, and Cov(X) exists if and only if f;r F(r)dr < =,

u, L) is an example

irn which case 0 < Cp < = A normal distribution Nn(-

of an elliptic distributinn with

s —2 1l o"8/2 . o-5/2 -
F(S z"/zr(n/z) e ’ AF(S) e ’ Ce 1.

r

Other basic properties of elliptic distributions have been obtained by
Kelker [5] and are summarized in Muirhead [7, pp.32-40].




We now turn to the information matrix GF(u,z) of the e1liptic

distribution (2.1). In this paper, however, we confine our attention

to a submanifold of P(n, R) consisting of the cone C(zo) = {0220: o > 0}
where I, is a fixed element of P(n, R). The resulting parameter space
is now R"xC(zo) which is an (n+1)-dimensional submanifold of the full
n(n+ 3)/2-dimensional manifold R™xP(n, R). Note, however, that the
former is not a geodesic submanifold, with respect to the information
metric de*GF(e)de, 8 = (u,I), of the latter. A slight generaiization

is obtained by replacing u in (2.1) with u = Ag where 8 = [B]. ...,Bme
is a vector in R" and A is a fixed nxm matrix of rank m <n. In par-

ticular, AtA is a nonsingular mxm matrix, and the density in (2.1) is

of the form
plxle, o) = L2 5 1120 o 2 pg) ey (- - ha)s (2.5)
n

where F is a function from R_into R, satisfying (2.2). In this case,
x 1s in the sample space R" and (8,0) is in the parameter space
RT+]= Rme+ which is a half-space in RM+].

In the setting of m = n, A = I (the identity matrix of R") and
o £ 1, the informative gaometry ~f the distrioution i~ (2.5), wita 8 in
the parameter space R", was studied by uitcheT{ and .~zanowski [6]. The
analysis in this paper will enable us t. r?kover the r=suylts in the
setting of [6] as a special case of our rore general seiting.

To find the information matrix G(B.c) = G, A':O\ .-} of p(-|B, o)
in (2.5), we shall assume, in addftion to (2.2°. that ~ is also in

C‘(R+) with

I P2 ((2F) (r) 1 odr <
0

(2.6)
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and

J. 'n/zﬂ"(r){(u)(r)}zdr < =,

0
£
where £F = F'/F is the logarithmic derivative of F. Then, for

p=np(|8,0a), G= G(g,o) ad E = E(s.o)‘ we have

61 Gy
G =
|21 S22
where
) 3
€,y * E{— log p —z log p},
n P T I
=gt - gl 3
612 Gy Has log p 3 log p}
and

]
Gyp = Els= log p 33; log p}.

(2.7)

(2.8)

Later, in Section 4, we shall shew that conditions (2.2) and (2.6)-(2.7)

guarantee the finiteness of the matrices ij (1 <J, k <2) and the

(strict) pusitive-definiteness of the information matrix G. Moreover,

we shall also show that, in fact

6y = 207 A IA, Gy, = 6 =0, Gy = bo
where
as % Jorn/zF(r){(xF)(r)}zdr
and

b = I P2V s 20 (R (r) 1 2F (r)dr
0

(2.9)
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In particular, 0 < a, b < =,

To find the informatior metric ds2 of p(<|8, o), we consider the

.
" A

-
-

orthogonal diagonalization

vovt = atzola

O AR
L e =

0
of the mvm positive-definite matrix A*x61A = (261/2A)*(£6‘/2A). Here
>
'*g V is a mxm orthogonal matrix and D = diag[x], ...,Am] with Aj >0
(j = 1,...,m). Then the linear change of parameters
2
. +_ =T 12,4 .
<] -[9], sev Gm] - ab D V B’ em+] =0

F:IL N

constitutes a diffeomorphism (8,0)—>6 = (8, em+]) of the parameter space

Ao, -
7‘1 P™ onto 1tself with the Jacobian (ab™1)"2 (a, ... ag) 72 > 0. The

Jacobian-matrix of the inverse of this transformation 1s

b Tvo /2 g
J = ’
0 1

2

and hence the information matrix G(8) ir the new coordinates o =

t
[8qs ceus s8] is

%
27
é ' G(e) = %o = be 2.1

N m+]Tm+]
23 "
t:f where Im+1 js the identity matrix of r" ., The information metric is
('
s 4
m+] p
2 _ +a _ b 4
5% ds“(8) = do G(e)de = ;7—-jz](dej) , (2.10)
“ m+1
7
wnich is, effectively, the Poincare” hyperbolic metric of the upper half-
> space RT*]= {[e]. ...,em+]]* e Rm+]: Ome1 > 0} (see, for example, Wolf

-
ES [10]). It follows that the manifold of the family of distributions p(+]e) in
)

E\. PRy R ARSI B RS B A A B B B A IR M AN R B7 AR B B BB By B R B RS I BB B R RA B AP 0 GRS PSS L s S
'



(2.5), 8 & XRT”. is iso'#‘opic with a constant negative Riemannian
curvature
xk = =1/b.
In particular, for any two points cn this hyperbolic manifold, there
exists one and cnly one geodesic line joining the two points.
The equations of the geodesics of the above infcrmation metric,

in terms of its arc-length parameters, are found to be

(k = ],..-om))

- -2 S
8y = /bC By tanh(E+e) +0,,

= C-]

s
O+ SECh(-if +e),

v

where ¢, B, and Ok (k = 1,...,m) are real constants of integration,
and

1/2
- 2
C=¢b v ,

k

B
1

Ke~13

or C = », in which case 8, = 0k (k = 1,...,m) and Oms] = 0. Note that

since
m
2 2 _ A2
RRLAL R N

the above geodesics are semi-circles of the upper half-space RT", with
center (0]...., q“,O) and radius C", and are ortkogonal tu the hyper-
surfaces e ., = £, (£ > 0).

The geodesic distance or the Rao distance 012 between two points
ol = 1), ol1)) and {2) = (5(2), o{2)) 56 BT i5 then

m+1 +

] = -1
ny, = vb log Tjjz;;- 2/b tanh (8y5) (2.11)
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.:E 12 ”5(” 6(2)” + b(e(” (2))
:_: Thus, using the old coordinates (8,0) of R'"”, this Rao distance P12
‘E between p(-ls(]), oy) and p(- a,) admits the same form with
¥ 1/2

v . tato ) Y
o by o ) o) Mig Moy o)) ey o) L
e - tat.- - *
: .:: 3(8(]) 3(2)) A zO A(B(]) 8(2)) + b(Ol "’02)
. b :
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3. P}AHALANOBIS DISTANCE

’
If ¢ in the distributions (2.5) is fixed, say o = o, > 0, then the

0
parameter space of the distributions is restricted to R". In this case

the information metric in (2.10) reduces to the euclidean metric on R"
m
ds?(8) = bog? T (¢e))?,
3=

and thus the resulting Ras distance 5, between p(-le(]). oy) and

p(*IB(Z). oo). in the manifold Rmx{ool. is

1/2
5‘2 = °(-)1'/5l(5(1)'3(2))*"?':51“8(])'8(2)) . (3.1)

Since, however, Rmx(oo} 1s clearly not a geodesic submanifold with re-
spect to the nonreduced metric dsz(e). of RT*] = Rme+ 6‘2 must exceed
the nonreduced Rao dis* . .
redu ao dis*ance 0., tetween p( le(]). ap) and p( '8(2)' o)
Ir the general case that ¢ is not fixed, we introduce a modifica-

tion of 5‘2 in the form

| 1/2
. -1/2 Lyt i

which we call the Mahalanobis gemeralized-diatance between p(-[8(y), o)
and p(-le(z). o,). This quantity reduces to 5,, when o, = 0, = o, and

is directly relatad to the classical Mahalanotis distance M]Z between
D('IB(1). oq) and p(-[a(z). ag)s provided that Cov(X) of the distribu-
tion p(-s, °0) in (2.5) exists. That is, besides (2.2) and (2.6)-(2.7),
we must also assume that the quantity cpo defined in (2.3), satisfies
0>cp <= In this case, Cov(X) = cragzo and 8]2 . J;CFMIZ‘ The re-

lationship between the Mahalanobis generalized-distance d.‘2 and the Rao

.
[ROSR——
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distance 1 can be read off from (2,11)-(2.12) and (3.2). This, after
some 2]gebraic manipulations, gives
1/2

-1 1
r 2/5 sinh™' —— {42 Y
912 2/5 dl? + b(d‘ 02) /0]02 .

In particular, Pyo is an increasing function of dlZ' and

2 2 1/2
p1p < {dyz * blog - 05) /0o 5.

We therefore conclude that the statistical tests based on eithe. P12 OF

on d]2 are completely equivalent when /bllié - 1027E;'= const. In particu-
lar, this is so when o and o, are fixed. Moreover, when 9y = 05 * 9gs

d), reduces to 5]2 and we obtain the symmetric relationships

9]2 = 2"5 Sinh-](S]z/ZVﬁ)

and

612 = 2/b sinh(p]2/2/5). (a] =0, ao).

Especially, °12 {s an increasing function of 512 and, of course,
02 5]2. Moreover, 5, = P12 ¥hen oy, <i 2/b.

when Cov(X) of p(-|8, ao) exists, the reduced Rao distance 6]2 in
(3.1) was also discussed in Mitchell a,ﬂ Krzanowski [6] in the special
setting of m = n, A =1 and o5 = 1. The discussion in [6], however,

does not contain the above relationships between 812 and the fuller Rao

distance °12°
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4. EVALUATIONS OF INTEGRALS

This section is devotéﬁ to the evaluations of the integrals appear-
ing in this paper that are associated with the elliptic distribution
(2.1) and its information matrix G in (2.8). It may therefore be re-
garded as an appendix to this paper.

To evaluate an integral of the form s nfdv. we use polar coordin-

R
ates
J f(x)dv(x) = I rn']q f(rx)do(x))dr (4.1)
R" 0 Sn
where dv is the volume Lebesgue measure of R", Sn = (x e R": [[x]] = 1}

is the unit sphere of R". and do is its surface measure.

n
For x = [x],...,xn]* e R and a = [a].....an]* e 22, we use
x‘;l
we also define a function §: R"=3 (0,1} by letting &(x) = 1 if x e 2|

the multinomial notation of x* = cee xz” and |af = At b

n

and &(x) = 0 if x e lR"\ 12.

LEMMA 4.1, et a = [ay,...ha 1T e 2], mhen

X dO X = 6 a 2 2 II [ a I 2 T n ¢ 1 C e

In particular,

o(5y) = [ do = 2" e,
Sﬂ

Proof. Using (4.1), we find that

f xae-llxllzdv(x) - f 'Mlal-]e'rzq
n

x"do(x))dr
R 0 S

1 . ,/n+la a
= 5T ( )| x"do(x),
zr (g e
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and thus

2
! x%do(x) = 2 [ e~ XM gy (x)
S n

N r(n* 3 )

2 2
= n j ‘t
mis] Lt e " dt.

If for some 1 < j <n, aJ is odd, then the above product vanishes,

Otherwise,

2

J x%do(x) = - 1'1 2'[ tcie°t2dt
S, @) 5= o

and the lemma folliows.

This lemma, together with (4,1), will enable us to prove that
p(+|u, £) in (2.1) is a probability distribution, provided (2.2) is

satisfied. Indeed, letting y = ;~1/2

I p(x|u, L)dv(x) = ﬂ-%%lj F(llyllz)dv(y)
R

nn
ﬂ%’%lj Te(r )(f do)dr

0

(x=wu), we have

n

- 2[ rn']F(rZ)dr
0

- I r"lz-lF(r)dr =],
0

Similarly, to prove (2.3), we observe that
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0p(t) = e tug(elt (X-u)),

and so, using y = :']/z(x'-gs and s = /2

E(e't'(x' u))_ I elte{x-u)
R"

t,

p(x|u, £)dv(x)

- LB e S Yr(ly ) 2aviy).
Rn

"

But, using (4.1) and Lemma 4.1 again, we obtain the well-known formula,

[ e'eiyiPaviy) = @™2ys= D72 2P, o Ulsliner,
R" 0

and so

g(e't-(Xu)) . Zr(n/Z)f r""]F(rz)Kn,2_1(rZHSIIz)dr
0

*
< r(o/2)| P3N,y trlls i Per
0

< aglllsi?) = agteton),
and (2.3) follows.
We now consider the distribution p(-|g, o) in (2.5), under the
assumptions (2.2) and (2.6)-(2.7). To evaluate the information matrix G
in (2.8), we calculate the matrices GJk (V < J, k < 2) with the aim of

nroving (2.9). (e let Z = o“zallz(x- Ag), to find

4
6 = oy 8'E(en 212122 s,

612 % G = Z 8TECEN 12N (n + 222 (1202) 1
and
65 * 5 Et(n+2llzlP e (11211 2) B,
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where B = zBI/ZA. Pe use (4.1) and Lemma 4.i tn compute the elements

of the nxn matrix E{(&F)Z(HZIIZ)Zfl}. The (i,j)-element is then

%)[ (:‘F)Z( “1”2)2113"'( HZ||2)dv(z)
R"

. %;Lrn”(xﬂz(rz)ﬂrz)qs 22do(2) ) ar

n

(n l)/2
2611 3u r’n/zlf n+](“_. (r‘ )F(r Yar

=5y n f 2R (r) ((2F)(r))2dr = 6, a/8,
0

1J
and thus Gy, = ao'ZA*za‘A as in 12.9).
Similarly,

2
Eq(ns 21201 2eH)(1Z12) )

. ﬂ%ﬁlf r""(n+2r2(IF)(r2)) 2F(r‘z)(J (do)dr
T S,

. J P2V s 2r (8F)(r))odr = b,
0

22 * bo~c as in (2.9). f’

Finally, the nx] expection-matrix appearing in the mx1 mat=ix G]2

antc 0 G

1s finite by virtue of the Cauchy-Schwarz inequality and by the fintce-
ness of G,y and G,,. It follows from (4.1) and Lemma 4.1 that

6., = G

2 " 0 as in (2.9).

12
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